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Chapter 20 

HIERARCHICAL BAYES MODEL 

Greg M. Allenby, Ohio State University 

Peter E. Rossi, University of Chicago  

Introduction 

Bayesian methods have become widespread in marketing.  The past ten years have seen a 

dramatic increase in their use to develop new methods of analysis and models of consumer 

behavior.  A challenge in the analysis of marketing data is that, at the individual-level, the 

quantity of relevant data is very limited.  Respondents frequently become fatigued after 

providing 15-20 responses in a conjoint survey, and purchase histories greater than 20 

observations are rare for all but a few product categories.  The lack of data at the individual-level 

corresponding to a specific construct such as preferences, coupled with the desire to account for 

individual differences and not treat all respondents alike, results in severe challenges to the 

analysis of marketing data.  Bayesian methods are ideally suited for analysis with limited data, 

and have resulted in new developments in modeling individual-level decision making, new 

characterizations of preferences and sensitivities across respondents, and models that include the 

analysis of a firm's decision in response to consumer demands.  

 The earliest impact of Bayesian methods in marketing was in the context of discrete 

choice models and its application to conjoint analysis (Allenby & Lenk, 1994; McCulloch & 

Rossi, 1994; Allenby & Ginter, 1995).   These models were different in that they connected 

respondent-level parameters to i) a model of decision making; and ii) a model describing the 

distribution of preferences across respondents.  Information from both sources (the individual's 
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responses and the distribution of all responses) were used to learn about a particular respondent's 

preferences and sensitivity to variables such as prices.  This resulted in a significant 

improvement in estimation, thus solving the limited data problem at the individual-level.  

Since that time, new models have been proposed to measure the effects of purchase 

timing (Allenby, Leone, & Jen, 1999), satiation (Kim, Allenby, & Rossi, 2002), the presence of 

decision heuristics such as screening rules (Gilbride & Allenby, 2004), to name just a few.  

Human behavior is complex, and many models of behavior are currently being developed that 

reflect this complexity.  While marketing has long recognized the importance of linking 

consumer needs to marketplace demand, it is just beginning to estimate extended models of 

behavior that include the relationship of needs to desired attributes or wants, wants to brand 

beliefs and consideration sets, and consideration sets to preference orderings and choice.  These 

extended models are often conceptualized in a hierarchical manner, where movement from one 

model component to the next proceeds in a logical manner.  Estimation of these new integrated 

models is not possible without Bayesian methods. 

 The nature and determinants of heterogeneity has also received much attention over the 

last ten years.  Across dozens of studies, the distribution of heterogeneity has been shown to be 

better represented by a continuous, not a discrete distribution (e.g., from a finite mixture model) 

of heterogeneity (Allenby, Arora, & Ginter, 1998).  This has important implications for analysis 

connected with market segmentation, where researchers often incorrectly assert the existence of 

a small number of homogeneous groups.  Bayesian methods are being used to identify new basis 

variables that point to brand preferences (Yang, Allenby, & Fennell, 2002), new ways of dealing 

with respondent heterogeneity in scale usage (Rossi, Gilula, & Allenby, 2001), and new ways of 
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characterizing social networks and their impact on demand (e.g., inter-dependent preferences, 

Yang & Allenby, 2003).  These developments would not be possible modern Bayesian methods.  

In this chapter, we provide an introduction to hierarchical Bayes models and overview of 

successful applications.  Underlying assumptions are discussed in the next section, followed by 

an introduction to the computational arm of Bayesian analysis known as Markov chain Monte 

Carlo methods.  A case study is then used to illustrate the use of Bayesian methods in the context 

of a conjoint study.  A discussion of challenges in using hierarchical Bayes models follows, 

closing with an annotated bibliography of Bayesian models and applications.   

Underlying Assumptions 

 The analysis of marketing data ranges from simple summaries of events (e.g., the average 

response) to analysis that attempts to uncover factors associated with, and is predictive of, the 

behavior of specific individuals.  The desire to look behind the data requires models that reflect 

associations of interest.  Consider, for example, an analysis designed to determine the influence 

of price on the demand for a product or service.  If the offering is available in continuous units 

(e.g., minutes of cell phone usage), then a regression model (see Chapter 13) can be used to 

measure price sensitivity using the model:  

 

 ( )2
0 1 ; ~ 0,t t t ty price Normalβ β ε ε σ= + +       (1) 

 

where yt denotes demand at time "t", pricet is the price at time t, and β0, β1 and σ2 are parameters 

to be estimated from the data.  The parameters β0 and β1 define the expected association between 

price and demand.  Given the price at any time, t, one can compute β0 + β1pricet and obtain the 

expected demand, yt.  The parameter σ2 is the variance of the error term εt, and reflects the 
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uncertainty associated with relationship.  Large values of σ2 are associated with noisy 

predictions, and small values of σ2 indicate an association without much uncertainty.  

 Individual-level demand, however, is rarely characterized by such a smooth, continuous 

association.  The most frequently observed quantity of demand at the individual-level is zero (0), 

and the next most frequently observed quantity is one (1).  Marketing data, at the individual-

level, is inherently discrete and non-continuous.  One approach to dealing with the discreteness 

of marketing data is to assume that the observed demand is a censored realization of an 

underlying continuous model:  
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Since individuals typically like to pay less for a good than more, the price coefficient (β1) is 

usually negative and demand is zero for high values of price.  As price falls, the likelihood of 

nonzero demand increases.   

Equation (2) is an example of a model that allows a researcher to understand the data 

beyond that which is possible with graphical methods or cross-tabulation of the data.  Graphical 

methods (e.g., scatterplots) can be used by researchers to detect the presence of a relationship 

between demand and price, but cannot be used to quantify the relationship.  Cross-tabs provide 

an approach to understand the relationship between variables that take on a discrete number of 

values, but are difficult to use when one of the variables is continuous, such as price.  The 

advantage of obtaining parameter estimates of β0, β1 and σ2 in equation (2) is that they provide a 
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quantification of the relationship between demand and price that can be used to explore the effect 

of any hypothetical price, not just a few or those that were observed in the past.   

Until recently, marketing practitioners have not made widespread use of models to get 

behind the data and quantify relationships.  An exception is in conjoint analysis, were models 

similar to equation (2) are being used to quantify the value (i.e., part-worth) of attributes and 

benefits of product offerings.  Marketing academic are currently developing new models for the 

analysis of marketing data, including demand data from the marketplace and data from 

questionnaires.  These models, often written in hierarchical form, offer new insight into 

consumer behavior and its correlates. 

Hierarchical Models 

 Consider equation (2) where observed demand is thought of as a censored realization of 

an underlying, continuous process.  The use of censoring mechanisms to deal with the 

discreteness of marketing data can be written as a hierarchical model by introducing a latent 

variable, zt:  
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( )2
0 1 ; ~ 0,t t t tz price Normalβ β ε ε σ= + +     (4) 

 

Hierarchical models make use of a property call conditional independence.  For the above 

model, the latent variable, zt, is sufficient for making inferences about β0, β1 and σ2.  If we were 

able to observe zt directly, no additional information would be revealed about these parameters 
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by the discrete data yt.  In other words, inferences about β0, β1 and σ2 are independent of yt given 

zt.  All information about the parameters flows through the latent variable (zt).   

It is often useful to think of models hierarchically, where the story told by the model is 

elaborated with additional models, or equations.  Equation (3) can be used to describe a scenario 

where a purchase is made (yt = 1) if the value of an offering is sufficiently large (zt > 0).  

Equation (4) then relates value to price, allowing it change as price changes.  Further elaboration 

could include equations for the price coefficient, possibly describing when an individual is 

expected to be price sensitive and when they are not expected to be sensitive to price.  

Alternatively, additional covariates could be included in equation (4) to explain other 

environmental and personal factors.  As a third example, one could think of data from multiple 

respondents modeled with equations (3) and (4), and the distribution of coefficients (β0,β1) 

distributed in the population according to a distribution (e.g., bivariate normal) whose parameters 

are to be estimated (i.e., a random-effects model). 

In marketing, hierarchical models have been used to describe i) the behavior of specific 

respondents in a study and ii) the distribution of responses among respondents.  The former is a 

model of within-unit behavior over time, and the later reflects cross-sectional variation in model 

parameters, often referred to as the distribution of heterogeneity.  Marketing data often takes on a 

panel structure with multiple responses (e.g., purchases) per respondents, which allows 

estimation of parameters associated with each model component.  An illustration of such an 

analysis is provided below.  

Bayesian Analysis 

Hierarchical Bayes models are hierarchical models analyzed using Bayeisan methods.  

Bayesian methods are based on the assumption that probability is operationalized as a degree of 
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belief, and not a frequency as is done in classical, or frequentist, statistics.  Most researchers in 

marketing have been trained to think about statistics in terms of frequencies.  When computing a 

sample mean or test statistic, for example, many of us think of multiple realizations of a dataset 

that could lead to variability of the statistic.  Even though the statistic is fixed for the data under 

investigation, we admit the possibility that other realization of the data could have been obtained.  

Assuming that the model under investigation is true, we compute the expected variability of the 

statistic. 

To a Bayesian, such calculations are difficult to justify.  There are two reasons for this.  

First, the researcher is usually interested in determining whether or not a particular model is 

correct, and the assumption that the model under investigation is true seems circular – why 

assume what you are trying to prove?  In addition, the researcher has not observed the multiple 

realizations of the data required to construct measures of uncertainty.  The researcher has only 

observed one dataset. 

An example is used to illustrate the issues.  Consider a laboratory testing setting where a 

test for a heart attack is being developed.  There are two states of nature for the patient: heart 

attack (H+) and no heart attack (H-).  Likewise, there are two outcomes of the test: positive (T+) 

and negative (T-).  The laboratory physician is critically interesting in the sensitivity Pr(T+|H+) 

and specificity Pr(T-|H-) of the test, where "Pr" denotes probability and the vertical bar, "|" is the 

symbol for conditional probability and means "given that".  Large values of sensitivity, 

Pr(T+|H+), indicate that the test is sensitive to detecting the presence of a heart attack given that 

one actually occurred.  Large values of specificity, Pr(T-|H-), indicate that the test is also good at 

detecting the absence of a heart attack given that it did not occur.  Measures of the sensitivity and 

specificity of the test are developed by applying the test to multiple patients that are known to 
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have suffered from heart attacks, and also multiple patients that are know to be healthy.  The 

laboratory physician is using statistics in a traditional, frequentist manner – the status of the 

patient is assumed known and variability in the results, leading to outcome probabilities, is due 

to repeated samples. 

Now consider the problem from the viewpoint of a clinician (e.g., internal medicine 

physician) examining a specific patient.  The patient's history is taken which leads the suspicion 

of a heart attack, and a test is order to help determined if this is actually true.  The lab returns the 

value of the test result (T+ or T-) and, based on this information, the clinician would like to 

determine whether or not the patient has, in fact, had a heart attack.  In other words, the clinician 

wants to know Pr(H+|T+) if a positive test result is reported, not Pr(T+|H+).  Moreover, the 

clinician has just one test result for the patient, not many.  The clinician's inferences must be 

based on small samples (one test result in this example), and should not rely on characterizations 

based on hypothetical outcomes across multiple, imaginary test results.  

Bayes theorem is used to move from Pr(T|H) to Pr(H|T).  Suppose the test result is 

positive (T+).  By the rules of conditional probability we have: 

Pr( , ) Pr( | ) Pr( )Pr( | )
Pr( ) Pr( )
H T T H HH T

T T
+ + + + × +

+ + = =
+ +

    (5) 

and  

Pr( , ) Pr( | ) Pr( )Pr( | )
Pr( ) Pr( )
H T T H HH T

T T
− + + − × −

− + = =
+ +

    (6) 

or, taking ratios: 

 

Pr( | ) Pr( | ) Pr( )
Pr( | ) Pr( | ) Pr( )

H T T H H
H T T H H

posterior odds likelihood ratio prior odds

+ + + + +
= ×

− + + − −

= ×
     (7) 
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The expression on the left side of the equal sign is the posterior odds of a heart attack given a 

positive test result, the first factor to the right of the equal sign is the likelihood ratio, and the 

second factor on the right is the prior odds.  Bayes theorem is used to move from the likelihood, 

which conditions on presence of the heart attack, to a statistics that is directly relevant to the 

clinician and allows her to update their prior belief about the presence of the heart attack.  The 

numerator of the likelihood ratio is the sensitivity of the laboratory test, and the denominator is 

equal to one minus the specificity, statistics that are readily available from laboratory studies.  

For a test with sensitivity of Pr(T+|H+) = 0.80 and specificity Pr(T-|H-) = 0.70, the likelihood 

ratio is 0.80/(1-0.70) = 2.67, indicating that the odds of the patient having a heart attack is 2.67 

times more likely given a positive test result relative to the clinician’s prior odds.  Thus, Bayes 

theorem takes a large-sample concept like sensitivity and specificity and transforms it into a 

statistic so that inference can be made about a single patient.  In addition, it combines these 

measures with prior beliefs expressed in the form of probabilities. 

 Bayes theorem, like any theorem in probability, is simply a device for keeping track of 

uncertainty.  It does this by the laws of conditional probability.  It provides a means of moving 

from probability statements about the outcome of events assuming we know how the world 

works, to statements about how we think the world might work based on what we observed in 

the data.  It conditions on the observed data, and yields exact finite-sample inference that is not 

based on asymptotic, hypothetical outcomes that haven't been observed by the researcher.  

Bayesian analysis treats all unobservables the same, whether they are parameters, hypothesized 

relationships or confidence intervals – all are derived from the same theorem based on the 

concept of conditional probability.   
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Despite its elegance, the reason that Bayesian methods have not caught on until recently 

is due to the complexity of the calculations involved with implementing Bayes theorem in all but 

the simplest of models. For example, the model described by equations (1) and (2) involves 

continuous error terms and cutoff values that were difficult to quantify, until recently. 

The HB Revolution 

 Quantitative analysis in marketing makes use of models with parameters, and these 

parameters are the object of analysis in hierarchical Bayes models, not just the presence or 

absence of an effect.  Probability distributions are used to quantify prior beliefs about the 

parameters (e.g., the price coefficient, β1, in equation (4)), which is updated with the information 

from the data to yield a posterior distribution.  Bayes theorem is expressed as: 

 Posterior Likelihood Prior∝ ×        (8) 

where the proportionality sign, "∝", replaces the equal sign, "=", in equation (7) because the 

proportionality constant, Pr(T+), does not cancel out.   

 Prior to the computational breakthrough known as Markov chain Monte Carlo (MCMC), 

the implementation of Bayes theorem involved multiplying probability densities for the prior by 

the probability expression for the likelihood to arrive at a posterior distribution of the parameter.  

To illustrate the complexity involved, consider a simple regression model: 

 2; ~ (0, )t t t ty x Normalβ ε ε σ= +       (9) 

where prior distributions for the regression coefficients are typically assumed to be distributed 

according to a normal distribution: 

 

 2
22

1 1( ) exp ( )
22

π β β β
σπσ
−⎡ ⎤= −⎢ ⎥⎣ ⎦

       (10) 
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and, similarly, a prior distribution is assumed for the variance term, π(σ2).  Equation (10) is the 

formula for a bell-shaped curve centered at 1β and standard deviation equal to σ.  This prior 

distribution was combined with the likelihood, which reflected the information contained in the 

data about the parameter: 

2 2
22

1

1 1( | , , ) exp ( )
22

T

t t t t
t

y x y xπ β σ β
σπσ=

−⎡ ⎤= −⎢ ⎥⎣ ⎦
∏      (11) 

 

The posterior distribution of the parameter β is obtained by multiplying the prior distribution 

(equation 10) by the likelihood (equation 11) and viewing the resulting product to be a function 

of the unknown parameter: 

 

2 2 2( , | , ) ( | , , ) ( ) ( )t t t ty x y x

posterior likelihood priors

π β σ π β σ π β π σ∝ × ×

∝ ×
       (12) 

 

This explains why Bayes theorem, while conceptually elegant, was been slow to develop in 

marketing and other applied disciplines – the analytic calculations involved were too difficult to 

perform in all but the simplest of problems.   

 The emergence of Markov chain Monte Carlo (MCMC) methods has eliminated this 

analytic bottleneck.  Rather than deriving the analytic form of the posterior distribution, MCMC 

methods substitute a set of repetitive calculations that, in effect, simulate draws from this 

distribution.  These Monte Carlo draws are then used to calculate statistics of interest such as 

parameter estimates and confidence intervals. The idea behind the MCMC engine that drives the 
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HB revolution is to set up a Markov chain that generates draws from posterior distribution of the 

model parameters.  The Markov chain for the model described by equations (10) and (11) is: 

1. Draw β given the data {yt,xt} and the most recent draw of σ2 

2. Draw σ2 given the data {yt,xt} and the most recent draw of β 

3. Repeat 

 

and the Markov chain for the model described by equations (3) and (4) is: 

1. Draw zt given the data {yt,xt} and most recent draws of other model parameters 

2. Draw β0 given given zt and most recent draws of other model parameters 

3. Draw β1 given given zt and most recent draws of other model parameters 

4. …. 

5. Repeat 

While idea behind MCMC methods is simple, its implementation requires the derivations 

of the appropriate (conditional) distributions for generating the draws so that the Markov chain 

converges to the posterior distribution.  These distributions are derived using Bayes theorem, in a 

manner similar to the description above for equations (10) and (11).  Fortunately, many tools 

exist to assist the researcher in generating the draws from more complicated models.  As a result, 

the approach has wide application. 

Illustration 

 An advantage of estimating hierarchical Bayes (HB) models with Markov chain Monte 

Carlo (MCMC) methods is that it yields estimates of all model parameters, including estimates 

of model parameters associated with specific respondents.  In addition, the use of MCMC 

methods facilitate the study of functions of model parameters that are closely related to decisions 
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faced by management.  The freedom afforded by MCMC to explore the parameter space was one 

of the first properties exploited in the marketing literature (Allenby & Ginter, 1995).  In this 

study, HB+MCMC is used to explore extremes (i.e., tails) of multivariate distributions, providing 

insight into actions that can be taken to profitably grow a firm's base of customers. 

Background 

 Organizations excel when they understand and respond to their customers more effectively 

than their rivals.  To succeed in a competitive environment, organizations need to identify which 

customers are most likely to buy new products and services, and which customers are most likely to 

buy (or switch) due to changes in pricing, distribution and advertising strategies. Organizations can 

design products and programs which are most likely to elicit an immediate, strong market response 

and direct them to the individuals who are most likely to respond favorably. 

 This process involves understanding extremes.  Consider, for example, the task of 

identifying an optimal product offering and assessing its potential demand.  This task is often based 

on the results of a conjoint study which determines the value of the product attributes.  Products are 

introduced into the market if a profitable level of demand exists, where a large portion of this 

demand comes from customers who currently use an existing product.  The customers who are most 

likely to switch to the new offering are those who most value its unique attribute level or 

combination of attribute levels (relative to existing products), or those who least value the properties 

of their current product.  In other words, the switchers are those individuals who are most extreme in 

their preferences for the product attribute levels. 

Model  

 In this illustration we use a hierarchical Bayes random-effects logit model that pools the data 

and retains the ability to study the preferences and characteristics of specific individuals.  The model 
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is developed within the context of a choice setting where respondents are asked to select their most 

preferred option, where choice probabilities (Pr) are related to attribute-levels, x, using the 

expression:  

 

 exp[ ' ]Pr( )
exp[ ' ]

i h
h

j h
j

xi
x
β
β

=
∑

        (13)  

 

where h indexes the respondents, i and j index the choice alternatives, x is a vector of attribute-

levels that describe the choice alternative, βh is a vector of regression coefficients that indicate the 

part-worths of the attribute-levels, and Pr(i)h is the probability that respondent h selects the ith choice 

alternative.  The logit model maps a continuous variable (xi′β) onto the (0,1) interval that 

correspond to a choice probability. 

 Heterogeneity is incorporated into the model with a random-effects distribution whose mean 

is a function of observable covariates (z), including an intercept term: 

 

 ~ (0, )h h h hz MVN Vββ ξ ξ= Γ +       (14) 

 

where Γ is a matrix of regression coefficients, which affects the location of the distribution of 

heterogeneity given zh.  Γ is therefore useful for identifying respondents that, on average, have part-

worths that are different from the rest of the sample. 

 The covariance matrix Vβ characterizes the extent of unobserved heterogeneity.  Large 

diagonal elements of Vβ indicate substantial unexplained heterogeneity in part-worths, while small 

elements indicate that the heterogeneity is accurately captured by Γzh.  Off-diagonal elements of Vβ 
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indicate patterns in the evaluation of attribute-levels.  For example, positive covariations indicate 

pairs of attribute-levels which tend to be evaluated similarly across respondents.  Product offerings 

composed of these attribute-levels will be more strongly preferred by certain individuals (i.e. more 

extreme preferences will exist).   

 Equations (13) states that choice probabilities are determined by attributes of the offering (x) 

and part-worths of the respondent (βh).  Equation (14) then links a respondent’s part-worths to 

attributes of the respondent (zh) and coefficients that describe the population of respondents (Γ and 

Vβ).  Thus, inferences about a specific respondent’s part-worths is a function of that respondent's 

data and the distribution of part-worths in the sample.  The model can be written in hierarchical 

form as follows: 

 y | x, β            (15) 

 

 β | z, Γ, Vβ          (16) 

   

 Γ | a, A           (17) 

 

 Vβ | w, W          (18) 

 

where equations (17) and (18) are prior distributions of the hyper-parameters, and the analyst 

provides values for (a,A) and (w,W).  The Markov chain for the model described by equations 

(15) through (18) is: 
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1. Generate draws of βh (one respondent at a time) given {yi,h,xi,xj} and other model 

parameters.  Repeat for all respondents. 

2. Generate a draw of Γ given the set of respondent-level parameters {βh} and Vβ. 

3. Generate a draw of Vβ given {βh} and Γ 

4. Repeat 

 

The conditional independence property of hierarchical model simplifies the distributions 

in steps 2 and 3 in the above recursion.  Given the individual-level coefficients {βh}, the 

conditional distributions of Γ and Vβ do not depend on the actual choices.  All information from 

the data relevant to these parameters comes through the individual-level coefficients, {βh}.  As a 

result, the form of the distribution used to generate the draws in steps 2 and 3 are relatively 

simple. 

The Markov chain generates draws of all model parameters {βh}, Γ, and Vβ, the number 

of which can be large.  It is not uncommon in conjoint analysis for there to be hundreds of 

respondents (h), each with part-worth vectors (βh) of dimension in the tens.  Models with 

thousands of parameters can easily be estimated with hierarchical Bayes models.  The estimation 

of models of such high dimension was unthinkable a short time ago, and as a result these 

methods constitute a breakthrough in statistical science. 

Data 

 Data were obtained by a regional bank wishing to offer credit cards to customers outside of 

its normal operating region, labeled as "out-of-state" hereafter.  As part of a larger study of assessing 

the needs and feasibility of making such an offer, a conjoint study was conducted over the telephone 

with 946 current customers who provided demographic information.  The bank and the attribute 
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levels are disguised in this case to protect the proprietary interests of the cooperating firm.  Specific 

numeric attribute levels were used in the actual study.  Credit card attributes and attribute levels are 

presented in Table 20.1. 

Table 20.1 

Description of the Data 

Sample Size 946 Respondents 

 14,799 Observations 

Attributes and Attribute-

Levels 

 

1. Interest Rate High, Medium, Low fixed 

Medium variable 

2. Rewards The reward programs consisted of annual fee waivers or interest 

rebate reductions for specific levels of card usage and/or 

checking account balance.  Four reward programs were 

considered. 

3. Annual Fee High, Medium, Low 

4. Bank Bank A, Bank B, Out-of-State Bank 

5. Rebate Low, Medium, High 

6. Credit line Low, High 

7. Grace period  Short, Long 

Demographic Variables Age (years) 

Annual Income ($000) 

Gender (=1 if female, =0 if male) 
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 Preferences were obtained from a tradeoff study in which respondents were asked to choose 

between two credit cards that were identical in every respect except for two attributes.  For example, 

respondents were asked to state their preference between the following offerings: 

 

The first card has a medium fixed annual interest rate and a medium annual fee, and 

The second card has a high fixed annual interest rate and low annual fee. 

 

 Each respondent provided responses to between 13 to 17 paired-comparisons involving a 

fraction of the attributes.  A respondent trading-off interest rates and annual fees, for example, did 

not choose between rebates and credit lines.  As a result it was not possible to obtain fixed-effect 

estimates of the entire vector of part-worths for any specific respondent.  Moreover, even if all 

attribute levels were included for each respondent, constraints on the length of the questionnaire 

preclude collecting a sufficient number of trade-offs for accurate estimation of individual 

respondent part-worths.  As noted above, this data limitation is less important in random-effect 

models which pool information across respondents.  In all, a total of 14,799 paired-comparisons 

were available for analysis. 

 Results 

 Age, income and gender are mean-centered in the analysis so that the intercept of Γ can be 

interpreted as the average part-worth for the survey respondents.  Figure 20.1 displays the series of 

draws of these elements of Γ.  The Markov chain was run a total of 20,000 iterations, and plotted is 

every 20th draw of the chain.  The figure indicates that chain converged after about 6000 iterations.  

Unlike traditional methods of estimation, the draws from the Markov chain converge in distribution 
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to the true posterior distribution, not to point estimates.  Convergence is determined by draws 

having the same mean value and variability over iterations. 
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 Table 20.2 reports posterior means for the elements of Γ.  The column labeled "Intercept" 

corresponds to the coefficients displayed in Figure 20.1.  The intercept estimates indicate that, on 

average, respondent penalize out-of-state banks by 3.758 utiles.  This penalty can be overcome by 

offering low fixed interest rates (relative to high fixed interest), low annual fees, and long grace 

periods.  In addition, older respondents assign less importance to changes in interest rates and other 

product attributes, while richer respondents are more likely to respond to the same incentives.  For 

example, consider the part-worth estimates for the attribute level "low fixed interest rate".  The 

coefficient for age is -0.025, indicating that an additional 50 years of age is associated with a 

reduction of 1.25 in the estimated part-worth.  Viewing this as an adjustment to the fixed effect 

coefficient, we see that the part-worth is nearer zero for older individuals.  Similarly, the estimated 

income coefficient for "high rebate" is 0.021, implying that an additional $50,000 in annual income 

is associated with an increase of 1.05 in the estimated part-worth.   The results indicate that younger, 

high income respondents assign less penalty to out-of-state banks.  In addition, the coefficients for 

gender indicate that females are particularly responsive to lower annual fees. 

 

Table 20.2 

Posterior Mean of Γ 

Attribute-Levels Intercept Age Income Gender 

Medium Fixed 

Interest 2.513 -0.013 0.011 0.106 

Low Fixed Interest 4.883 -0.025 0.021 0.324 

Medium Variable 

Interest 3.122 0.002 0.025 -0.354 

Reward Program 2 0.061 0.005 0.001 -0.248 
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Reward Program 3 -0.391 0.022 0.014 -0.224 

Reward Program 4 -0.297 0.019 0.016 -0.243 

Medium Annual Fee 2.142 -0.004 0.002 0.668 

Low Annual Fee 4.158 -0.010 0.004 1.302 

Bank B -0.397 0.001 0.003 0.124 

Out-of-State Bank -3.758 -0.003 0.013 -0.054 

Medium Rebate 1.426 -0.008 0.003 0.231 

High Rebate 2.456 -0.014 0.021 0.379 

High Credit Line 1.116 -0.010 -0.003 0.368 

Long Grace Period 3.399 -0.020 0.019 0.296 

 

 

 

 Table 20.3 reports the covariance matrix (Vβ) that characterizes the unexplained variability 

of part-worths across respondents. The diagonal elements of the matrix are large and indicate 

substantial unexplained heterogeneity in response.  Off-diagonal elements of the covariance matrix 

indicate attribute-levels that tend to be evaluated similarly across respondents.  Most of these 

estimates are large and significantly different from zero.  The covariation between out-of-state bank 

and low annual fee, for example, is equal to 8.1.  This translates to a correlation coefficient of 0.55.  

This positive covariance implies that respondents who prefer a low annual fee are those who are less 

sensitive to whether the bank is out-of-state.  In making this interpretation, recall that the out-of-

state attribute-level estimate is negative (Table 20.4), and a more positive evaluation implies it is 

closer to zero.  Therefore, offering a credit card with low annual fee may be a particularly effective 

method of inducing usage by out-of-state customers, if this group is large enough.  This issue is 

explored in more detail in the next section. 
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Table 20.3 

Posterior Mean of Vβ 

Attribute-Levels               

Medium Fixed Interest 2.8 4.5 4.3 0.0 0.2 0.5 1.1 2.0 0.3 1.2 0.7 1.4 0.9 1.4 

Low Fixed Interest 4.5 8.8 8.2 0.0 0.4 0.9 1.8 3.4 0.5 2.1 1.2 2.5 1.2 2.4 

Medium Variable 

Interest 4.3 8.2 10.2 -0.1 0.5 1.2 1.9 3.7 0.1 1.5 1.5 2.9 2.1 3.0 

Reward Program 2 0.0 0.0 -0.1 1.2 0.2 -0.2 -0.3 -0.5 0.0 0.5 -0.3 -0.5 -0.4 -0.5 

Reward Program 3 0.2 0.4 0.5 0.2 2.0 1.8 -0.2 -0.7 0.5 1.4 -0.4 -0.9 0.4 -1.0 

Reward Program 4 0.5 0.9 1.2 -0.2 1.8 3.0 -0.3 -0.8 0.2 0.3 -0.6 -1.2 0.3 -1.1 

Medium Annual Fee 1.1 1.8 1.9 -0.3 -0.2 -0.3 4.1 6.9 1.4 4.4 1.0 2.2 2.3 2.6 

Low Annual Fee 2.0 3.4 3.7 -0.5 -0.7 -0.8 6.9 13.5 2.7 8.1 2.1 4.7 4.3 5.1 

Bank B 0.3 0.5 0.1 0.0 0.5 0.2 1.4 2.7 3.5 5.6 1.2 2.5 2.0 0.9 

Out-of-State Bank 1.2 2.1 1.5 0.5 1.4 0.3 4.4 8.1 5.6 15.9 2.3 4.8 3.9 2.0 

Medium Rebate 0.7 1.2 1.5 -0.3 -0.4 -0.6 1.0 2.1 1.2 2.3 2.4 4.0 2.0 2.1 

High Rebate 1.4 2.5 2.9 -0.5 -0.9 -1.2 2.2 4.7 2.5 4.8 4.0 8.5 3.6 4.5 

High Credit Line 0.9 1.2 2.1 -0.4 0.4 0.3 2.3 4.3 2.0 3.9 2.0 3.6 6.3 2.6 

Long Grace Period 1.4 2.4 3.0 -0.5 -1.0 -1.1 2.6 5.1 0.9 2.0 2.1 4.5 2.6 5.0 

 

Distribution of Heterogeneity 

 The value of the hierarchical Bayes model lies in its ability to characterize heterogeneity in 

preferences while retaining its ability to study specific individuals.   Figure 20.2 displays the 

distribution of heterogeneity for selected part-worths for all respondents.  In contrast, Figure 20.3 

displays the same distributions for one randomly selected respondent – respondent #250.  Both 

figures were constructed from the individual-level part-worth draws, {βh}, with Figure 20.2 using 

the draws over all respondents and Figure 20.3 using only those draws from one respondent.   
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  The distribution of heterogeneity reported in Figure 20.2 illustrates that respondents are 

diverse in their preferences and sensitivities to features of credit cards.  The mass of the distributions 

are located in regions with expected algebraic signs – e.g., a long grace period is expected to be 

preferred to a short grace period, and the distribution of part-worths for the long grace period is 

mostly positive.  In addition, the spread of the distribution is large for the logit model (equation 14) 

where coefficient values greater than five are associated with large changes in the choice 

probabilities.  The mean of the distributions of heterogeneity are reported in the column labeled 

"Intercept" in Table 20.2, and, as seen in Figure 20.1, the estimated mean of the distribution is 

precisely measured and different from zero.  Heterogeneity of preferences is therefore an important 

aspect of the model, and ignoring its presence can lead to incorrect inferences.   
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Figure 2. Distribution of Heterogeneity for Selected Part-Worths

 

 

 The distributions displayed in Figure 20.3 indicate that there exists substantial uncertainty in 

drawing inferences about the part-worths of a specific respondent.  An advantage of Bayes theorem 

is that it yields exact finite-sample estimates of the posterior distribution of respondent-level 

parameters.  Some of the distributions displayed in Figure 20.3 have mass centered away from zero 

(e.g., medium fixed interest, low fixed interest, out-of-state, long grace period) and some of the 
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distributions have mass centered near zero (e.g., low annual fee and high rebate).  These 

distributions can be used to form confidence intervals for individual-level part-worth estimates, to 

generate point-estimates (e.g., the mean of the posterior distribution), and can be used in 

conjunctions with choice simulators to explore aspects of product reformulation.  It conducting such 

analysis it is important to keep in mind that the individual-level part-worth estimates are not 

precisely estimated, and the use of point-estimates without acknowledging the amount of 

uncertainty will lead to over-confidence predictions of effect-sizes.  This over-confidence can be 

avoided by using all the draws of {β250} to make marketplace predictions, not just point estimates.  

 The beauty of modern Bayesian analysis is that the construction of distribution means and 

confidence intervals, and characterizing the uncertainty associated with marketplace predictions, is 

easy.  For example, the mean of the out-of-state distribution displayed in Figure 20.3 can be 

estimated by retaining the draws of β250 corresponding to the out-of-state part-worth, and simply 

computing the sample average for those draws from the portion of the converged Markov chain 

(e.g., iterations 10,000 through 20,000).  Similarly, an estimate of the standard deviation of any 

posterior distribution is obtained by computing the sample standard deviation of the appropriate 

draws. 

 

 

 



 26

-15 -10 -5 0 5 10 15

0.
00

0.
15

0.
30

Medium Fixed Interest

 

D
en

si
ty

-15 -10 -5 0 5 10 15

0.
00

0.
15

0.
30

Low Fixed Interest

 

D
en

si
ty

-15 -10 -5 0 5 10 15

0.
00

0.
15

0.
30

Low Annual Fee

 

D
en

si
ty

-15 -10 -5 0 5 10 15

0.
00

0.
15

0.
30

Out-of-State

 

D
en

si
ty

-15 -10 -5 0 5 10 15

0.
00

0.
15

0.
30

High Rebate

 

D
en

si
ty

-15 -10 -5 0 5 10 15

0.
00

0.
15

0.
30

Long Grace Period

 

D
en

si
ty

Figure 3. Part-Worth Distributions for Respondent 250

 

Focusing on Extremes 

 The objective of the conjoint study is to identify incentives that could be offered so that a 

regional bank can successfully offer credit cards to out-of-state customers.  The fixed-effect 

estimates in Table 20.4 indicate that on average, respondents penalize out-of-state credit cards 3.758 

utiles relative to their current bank, all other attributes assumed equal.  In the following discussion 

we consider two different incentives to overcome this penalty: low fixed interest (versus high fixed 
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interest) and low annual fee (versus high annual fee).  The coefficient estimates in Table 20.2 

indicate that on average each of these incentives is sufficient to overcome the out-of-state penalty.  

However we show below that the analysis of heterogeneity identifies important managerial 

differences in these incentives. 

 The covariance matrix of unobserved heterogeneity in Table 20.3 indicates that respondents 

who prefer low annual fee are less sensitive to the out-of-state status of the bank (i.e., covariance is 

equal to 8.1).  This is because of the strong positive covariance of respondent evaluations for the 

low annual fee and out-of-state bank attribute-levels.  Respondents who are more sensitive to the 

annual fee tend to have a higher (closer to zero) part-worth for the out-of-state attribute-level.  In 

contrast, the covariance between low fixed interest and out-of-state bank is only 2.1 (correlation 

equal to 0.18), indicating that respondents who prefer low fixed interest have about average 

sensitivity to the bank's location.  Since the response potential in Equation (13) is monotonically 

related to a respondent's utility for the attribute-levels, it is appropriate to compare the distributions 

of net utility arising from these incentives to overcome the out-of-state status of the bank.   

 The distribution of net utility for a particular product concept is a linear transformation of 

this distribution.  When the distributions of net utility are summed across respondents, the resulting 

aggregate distribution summarizes the information available at the market level about preferences 

for the product.  Figure 20.2 displays the aggregate distributions of respondent net utility for an out-

of-state bank with low interest or with low annual fee.  All other attributes are assumed to be equal 

to the first attribute-level reported in Table 20.1.  The figure is constructed by adding together the 

elements of {βh} corresponding to the net utility (e.g., βlow fee + βout-of-state) for each respondent and 

each iteration, and then constructing a distribution from these draws.  The means for low interest 

(the solid line) is larger than the mean for low annual fee (the dashed line), consistent with the 
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intercepts reported in Table 20.2.  However, the large positive covariation between low annual fee 

and out-of-state bank results in a wider distribution.    

 For purposes of illustration, suppose that the target market is defined as those individuals 

with net utility greater than 10.0.  Approximately 4.5% of the low interest distribution is above this 

value, in contrast to 7.5% for the low fee distribution.  Even though the average utility for low 

interest is 0.7 units larger, the low fee distribution has almost twice the mass in the region of the 

distribution corresponding to respondents with strong preference.  These individuals are more likely 

to represent profitable targets as indicated by Equation (13). 
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Challenges to Using HB Models 

 Hierarchical Bayes models free researchers from computational constraints that allows 

researchers and practitioners to develop more realistic models of buyer behavior and decision 

making. Moreover, this freedom enables exploration of marketing problems that have proven 

elusive over the years, such as models for advertising ROI, sales force effectiveness, and 
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similarly complex problems that often involve simultaneity.  The promise of Bayesian statistical 

methods lies in the ability to deal with these complex problems, but the very complexity of the 

problems creates a significant challenge to both researchers and practitioners. 

 In most cases, there exists no off-the shelf programs for estimating complex HB models.  

The WinBugs software is one exception.  Practitioners, however, have reported problems in 

applying WinBugs to datasets of the size encountered in commercial applications.  Sawtooth 

Software has created two programs for estimating HB models, one for choice-based conjoint and 

one for OLS regression. However, these programs are limited to modeling relatively simple 

problems. In fact, these programs are really HB extensions to “standard” choice-based conjoint 

and regression models. While the availability of these programs from Sawtooth Software has 

been a major impetus behind the adoption of HB estimation for choice-based conjoint, the ability 

to estimate more complex models is limited by the need to customize programs for each new 

model.  

 The forthcoming book, Bayesian Statistics and Marketing, by Rossi, Allenby and 

McCulloch (2005) provides a comprehensive introduction to HB models from a theoretical and a 

practical perspective.  The book contains software written in the R computing language for 

estimating most of the models discussed in this chapter.  Moreover, the programs are written so 

that users can modify the software to adapt to their needs, and tutorials are provided to help the 

user understand how to write code in this environment.   

 Researchers must also adjust to some of the differences they will encounter in using HB 

methods. As noted earlier, HB estimation methods do not “converge” on a closed-form solution 

in the way that many of our classical estimation methods, such as multinomial logit, do. 

Practitioners will need to become comfortable with the fact that once the variance in the 
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estimation stabilizes after several thousand "burn-in" iterations, there will still be considerable 

variation in the average parameter estimates. Another important difference with HB methods is 

that, instead of a point estimate of values for each respondent, we end up with a distribution of 

estimates for each respondent. While this is powerful in terms of understanding uncertainty, it 

adds to the complexity of the analysis, particularly in the case of market simulation. 

 In closing, the future of Bayesian methods in marketing is promising.  Bayesian models 

give researchers the freedom to study the complexities of human behavior in a more realistic 

fashion than was previously possible. Human behavior is extremely complex. Unfortunately, 

many of the models and variables used in our analysis are not. Consider, for example, the linear 

model in equation (2). While this model has been the workhorse of much statistical analysis, 

particularly in conjoint analysis, it does not provide a true representation of how respondents 

encode, judge, and report on items in a questionnaire. The future holds many opportunities to 

look behind the responses in survey data, and other marketing data, to gain better insight into 

how individuals will act in the marketplace. 
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